| Yazar | Mesaj #23868 25-09-2011 14:27 GMT+2 saat | |||||||
|
| Tecrübe Puanı.: 0% |
Ruh Hali: Belirtilmedi.
|
| Mesaj |
| Şehir: |
Ülke: ![]() |
| Meslek: |
| Yaş: |
R®P : R
P(x) = anxn + an-1xn-1 + … + a1x +®x a0 fonksiyonuna polinom fonksiyonu denir.
R®P : R
P(x) = 5×3 + 2×2 – 3x + 1 ifadesi polinom fonksiyonudur.®x
Örnek
P(x) = x2 + 2x + 1 polinomu için P(X-1) polinomunu bulunuz
Çözüm
P(x-1)’i bulmak için P(x)’de x yerine x-1’i yazalım.
P(x-1) = (x-1)2 + 2(x-1) + 1
= x2 – 2x + 1 + 2x – 2 + 1 = x2
P(x-1) = x2 olarak bulunur.
II: Yol:
Önce P(x) = x2 + 2x + 1 = (x+1)2 olarak yazıp x yerine x-1’i yazalım.
P(x-1) = (x-1+1)2 = x2 bulunur.
Örnek
P(x) polinomu için,
P(x+2) = x3 – 2×2 + 4 eşitliği veriliyor. Buna göre P(x) polinomunu bulunuz.
Çözüm
P(x+2) = x3 – 2×2 + 4 eşitliğinde
h –2 = x’i yerine&視H = x + 2 yazalım.
P(h – 2 + 2) = (h – 2)3 – 2(h – 2)2 + 4
P(h) = (h – 2)3 – 2(h – 2)2 + 4
P(x) = (x – 2)3 – 2(x – 2)2 + 4 bulunur.
Polinom Katsayılar Toplamı
P(x) = anxn + an-1xn-1 + … + a1x + a0 polinomunda x = 1 yerine yazılırsa
P(1) = an + an-1 + … + a1 + a0 katsayılar toplamı bulunur.
P(x) polinomunda x = 0 yerine yazılırsa sabit terimi bulunur.
Örnek
P(x) = 2×4 + 5×3 – 3×2 + x – 1 polinomunun katsayıları toplamını bulunuz.
Çözüm
P(x) de x = 1 ‘i yerine yazalım.
P(1) = 2.14 + 5.13 – 3.12 + 1-1
= 2 + 5 – 3 + 1 – 1 = 4 bulunur.
P(x) = anxn + an-1xn-1 + … + a1x +®x a0 fonksiyonuna polinom fonksiyonu denir.
R®P : R
P(x) = 5×3 + 2×2 – 3x + 1 ifadesi polinom fonksiyonudur.®x
Örnek
P(x) = x2 + 2x + 1 polinomu için P(X-1) polinomunu bulunuz
Çözüm
P(x-1)’i bulmak için P(x)’de x yerine x-1’i yazalım.
P(x-1) = (x-1)2 + 2(x-1) + 1
= x2 – 2x + 1 + 2x – 2 + 1 = x2
P(x-1) = x2 olarak bulunur.
II: Yol:
Önce P(x) = x2 + 2x + 1 = (x+1)2 olarak yazıp x yerine x-1’i yazalım.
P(x-1) = (x-1+1)2 = x2 bulunur.
Örnek
P(x) polinomu için,
P(x+2) = x3 – 2×2 + 4 eşitliği veriliyor. Buna göre P(x) polinomunu bulunuz.
Çözüm
P(x+2) = x3 – 2×2 + 4 eşitliğinde
h –2 = x’i yerine&視H = x + 2 yazalım.
P(h – 2 + 2) = (h – 2)3 – 2(h – 2)2 + 4
P(h) = (h – 2)3 – 2(h – 2)2 + 4
P(x) = (x – 2)3 – 2(x – 2)2 + 4 bulunur.
Polinom Katsayılar Toplamı
P(x) = anxn + an-1xn-1 + … + a1x + a0 polinomunda x = 1 yerine yazılırsa
P(1) = an + an-1 + … + a1 + a0 katsayılar toplamı bulunur.
P(x) polinomunda x = 0 yerine yazılırsa sabit terimi bulunur.
Örnek
P(x) = 2×4 + 5×3 – 3×2 + x – 1 polinomunun katsayıları toplamını bulunuz.
Çözüm
P(x) de x = 1 ‘i yerine yazalım.
P(1) = 2.14 + 5.13 – 3.12 + 1-1
= 2 + 5 – 3 + 1 – 1 = 4 bulunur.
__________________



