[Kayıt ol]   [Şifremi unuttum!
Kullanıcı adım:   Parolam:  
 
Yazar Mesaj   #23872  25-09-2011 14:39 GMT+2 saat  

ahmet





Tecrübe Puanı.: 0%
Ruh Hali: Belirtilmedi.
Mesaj
Şehir:
Ülke:
Meslek:
Yaş:
Facebook'ta Paylaş
KALAN POLİNOMUN BULUNMASI


Kalan polinomu, klasik bölme işlemiyle ya da aşağıdaki 3 yöntemden biri ile bulabiliriz.

1. Bölen Birinci Dereceden İse

Bir polinomun ax + b ile bölümünden kalanı bulmak için, polinomda değişken yerine yazılır.
• P(x) in x – b ile bölümünden kalan P(b) dir.
• P(mx + n) nin ax + b ile bölümünden kalan

2. Bölen Çarpanlara Ayrılıyorsa

Bölen çarpanlara ayrılıyorsa, her çarpan sıfıra eşitlenir. Bulunan kökler polinomda yazılarak kalan bulunur.
P(x) polinomunun a(x – b) . (x – c) ye bölümünden kalan mx + n ve bölüm polinom Q(x) ise,
P(x) = a(x – b) . (x – c) . Q(x) + mx + n olur.
P(b) = mb + n ... (1)
P(c) = mc + n ... (2)
(1) eşitliği ile (2) eşitliğinin ortak çözümünden m ve n bulunur.
Bölen polinomun derecesi n ise kalan polinomun derecesi en fazla (n – 1) dir.

3. Bölen Çarpanlarına Ayrılamıyorsa

Bölen çarpanlarına ayrılamıyorsa aşağıdaki 2 yöntem sırasıyla uygulanarak kalan polinom bulunur.
1) Bölen polinom sıfıra eşitlenerek en büyük dereceli değişkenin eşiti bulunur.
2) Bulunan ifade bölünen polinomda yazılır.
• P(x) polinomunun ax2 + bx + c ile bölü-münden kalanı bulmak için P(x) polinomunda x2 yerine yazılır.

4. P(x) Polinomu (ax + b)n İle Tam Bölünüyorsa,


P(x) = axn + bxm + d ise,
Pı(x) = a . nxn–1 + b . mxm–1 + 0
Pıı(x) = a . n . (n – 1)xn – 2 + b . m(m –1) . xm – 2 dir.

P(x) polinomunun (x – a) ile bölümünden elde edilen bölüm Q(x) ve kalan k1, Q(x) polinomunun (x – b) ile bölümünden kalan k2 ise,
P(x) in (x – a) (x – b) ile bölümünden kalan
K(x) = (x – a) k2 + k1 olur.

__________________
Çevirimiçi durumu   

HUZURİSTAN - Temiz Bilgi
2025-12-14 15:40
Fatal error : Shield protection activated, please retry in 122 seconds...
After this duration, you can refresh the current page to continue.
Last action was : Hammering